本文共 1895 字,大约阅读时间需要 6 分钟。
排列问题的解决方案:
要解决满足条件的排列数量问题,可以将其转化为二分图匹配问题。具体步骤如下:
问题转化为二分图匹配:
动态规划计算匹配数量:
计算g[i]的值:
计算最终答案:
代码实现:
#include#define maxn 2000#define mod 924844033int read() { int x = 0, f = 1; char ch = getchar(); while ((ch < '0') || (ch > '9')) { if (ch == '-') f = -f; ch = getchar(); } while ((ch >= '0') && (ch <= '9')) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f;}int main() { n = read(); k = read(); for (int i = 1; i <= n; ++i) { for (int j = 0; j < 2; ++j) { if (!vis[i][j]) { int len = 0; for (int x = i, y = j; x <= n; x += k, y ^= 1) { vis[x][y] = 1; ++len; } t += len; a[t + 1] = 1; } } } f[1][0][0] = 1; for (int i = 2; i <= t; ++i) { f[i][0][0] = (f[i-1][0][0] + f[i-1][0][1]) % mod; for (int j = 1; j <= n; ++j) { f[i][j][0] = (f[i-1][j][0] + f[i-1][j][1]) % mod; if (!a[i]) { f[i][j][1] = f[i-1][j-1][0]; } } } for (int i = 0; i <= n; ++i) { g[i] = (f[t][i][0] + f[t][i][1]) % mod; } fac[0] = 1; for (int i = 1; i <= n; ++i) { fac[i] = (fac[i-1] * i) % mod; } ans = 0; for (int i = 0; i <= n; ++i) { ans = (ans + ((i % 2 == 1) ? (mod - 1) : 1) * g[i] % mod * fac[n - i]) % mod; } printf("%d\n", ans); return 0;}
通过上述步骤,可以高效地计算出满足条件的排列数量。
转载地址:http://bcwo.baihongyu.com/